NON-LINEAR CURVE FITTING


Description

This program uses the Levenberg–Marquardt algorithm to perform a non-linear parmateric fit to two-column x-y data. Click on the function type, write initial guesses for the parameters, and paste data below (no commas).

Function Library

functiondescription Initial parameters
$y=\sum a_n x^n$ polynomial $a_0, a_1,..., a_N$ for Nth degree
$y=a_0 e^{a_1 x} + a_2$ exponential + const. $a_0, a_1, a_2$
$y=a_0 (1-e^{-a_1 x})e^{-a_2 x}$ rising and falling exponential $a_0, a_1, a_2$
$y=a_0 (1-e^{-a_1 x})e^{-a_2 x}+a_3$ rising and falling exponential + const. $a_0, a_1, a_2, a_3$
$y=\sum a_{0n} e^{-\left({\frac{x-a_{1n}}{a_{2n}}}\right)^2}$ sum of Gaussians $a_0, a_1, a_2 ... a_n, a_{n+1}, a_{n+2}$
$y=\sum a_{0n} e^{-\left({\frac{x-a_{1n}}{a_{2n}}}\right)^2 }+c$ sum of Gaussians+ const. $a_0, a_1, a_2 ... a_n, a_{n+1}, a_{n+2},c$

Paste x-y data (sample shown)

Final coefficient vector: $a=\,$[]